These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Daily energy expenditure and its main components as measured by whole-body indirect calorimetry in athletic and non-athletic adolescents.
    Author: Ribeyre J, Fellmann N, Montaurier C, Delaître M, Vernet J, Coudert J, Vermorel M.
    Journal: Br J Nutr; 2000 Apr; 83(4):355-62. PubMed ID: 10858693.
    Abstract:
    The objectives of the present study were to determine whether differences in usual physical activity affect BMR, sleeping energy expenditure (EE), and EE during seated activities between athletic and non-athletic adolescents, and to establish individual relationships between heart rate and EE. Adolescents (n 49, four groups of eleven to fifteen boys or girls aged 16-19 years) participated in the study. Body composition was measured by the skinfold-thickness method and maximum O2 consumption (VO2max) by a direct method (respiratory gas exchange) on a cycloergometer. The subjects each spent 36 h in one of two large whole-body calorimeters. They followed a standardized activity programme including two periods of exercise simulating their mean weekly physical activities. Fat-free mass (FFM), VO2max, daily EE and EE during sleep and seated activities were significantly higher in athletic than in non-athletic subjects of both sexes. VO2max, daily EE and EE during exercise adjusted for FFM were higher in athletic than in non-athletic adolescents (P < 0.001), whereas sleeping EE, BMR and EE during seated activities and adjusted for FFM were not significantly different between athletic and non-athletic adolescents. However, sex differences in EE remained significant. Thus, differences in EE between athletic and non-athletic adolescents resulted mainly from differences in FFM and physical exercise. Usual activity did not significantly affect energy utilization of substrates. Finally, individual relationships were computed between heart rate and EE with activity programmes simulating the usual activities of athletic and non-athletic adolescents with the goal of predicting EE of the same subjects in free-living conditions.
    [Abstract] [Full Text] [Related] [New Search]