These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Twenty-four-hour profiles of serum leptin in siberian and golden hamsters: photoperiodic and diurnal variations.
    Author: Horton TH, Buxton OM, Losee-Olson S, Turek FW.
    Journal: Horm Behav; 2000 Jun; 37(4):388-98. PubMed ID: 10860682.
    Abstract:
    Serum leptin concentrations were obtained from male Siberian hamsters (Phodopus sungorus) and golden hamsters (a.k.a. Syrian, Mesocricetus auratus) housed on long [light:dark (LD) 16:8] and short (LD 6:18) photoperiods for 10-11 weeks. Blood samples were collected at 45-min intervals for 24 h from individual animals using an in-dwelling atrial catheter. In Siberian hamsters, exposure to short photoperiods as compared to long photoperiods reduced body weight (32.5 +/- 1.5 vs 47.7 +/- 1.1 g) and leptin (24-h mean: 5.3 +/- 0.4 ng/ml vs 18.6 +/- 2.1 ng/ml). Although photoperiod influenced the temporal distribution of leptin in golden hamsters, the main effect of photoperiod on leptin levels in golden hamsters did not reach significance (24-h mean: 7.1 +/- 1.0 ng/ml vs 5.1 +/- 0.8 ng/ml.). Body weights of golden hamsters did not vary significantly following exposure to short photoperiod for 11 weeks (178.3 +/- 3.6 g in LD 6:18 vs 177.8 +/- 7.3 g in LD 16:8). There was no nocturnal increase in serum leptin in either species. Marked interindividual differences were apparent in individual leptin profiles. Periodogram analysis revealed that only a few animals exhibited 24-h periodicities; the presence of a significant 24-h periodicity was more common in hamsters exposed to short days. Photoperiod-associated differences in the 24-hour profile of leptin secretion may be the result of photoperiod-associated changes in feeding behavior or metabolism. A full understanding of the regulation of leptin secretion in multiple time domains may enhance our understanding of the function of leptin.
    [Abstract] [Full Text] [Related] [New Search]