These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Author: Lu H, Booth PJ.
    Journal: J Mol Biol; 2000 May 26; 299(1):233-43. PubMed ID: 10860735.
    Abstract:
    The folding of the transmembrane protein bacteriorhodopsin that occurs during the binding of its retinal cofactor is investigated in a membrane-like environment. Changes in the retinal absorption band reveal two transient retinal-protein intermediate states, with apparent absorption maxima at 380 nm and 440 nm, respectively. Studies on a bacteriorhodopsin mutant of Lys216, which cannot bind retinal covalently, add to evidence that retinal is non-covalently bound in these intermediate states. The two retinal-protein intermediates are genuine intermediate states that form in parallel, each with an observed rate constant of 1.1 s-1. Meanwhile no formation of the folded state is detected. Folded bacteriorhodopsin, with all trans retinal covalently bound, forms from both retinal-bound intermediates with the same apparent rate constant of 0.0070 s-1 that is independent of retinal concentration. Retinal isomerisation then occurs with a rate constant of 0.00033 s-1 to give bacteriorhodopsin containing all trans and 13 cis-retinal. These results provide experimental evidence for multiple folding routes for a membrane protein that are pH dependent, with pH conditions determining the apparent folding route. These observed parallel folding paths are kinetically indistinguishable, which contrasts with most other observations of parallel folding pathways where only pathways with different kinetics have been reported. Furthermore, together with previous work, this study shows that bacteriorhodopsin has to populate at least two folding intermediates, during folding in the mixed lipid micelles investigated here, before the final fold is attained.
    [Abstract] [Full Text] [Related] [New Search]