These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disruption of peripheral target contact influences the development of identified central dendritic branches in a leech motor neuron in vivo. Author: Johnson LA, Kristan WB, Jellies J, French KA. Journal: J Neurobiol; 2000 Jun 15; 43(4):365-78. PubMed ID: 10861562. Abstract: Retrograde signaling from target tissues has been shown to influence many aspects of neuronal development in a number of developmental systems. In these experiments using embryonic leeches (Hirudo medicinalis), we examined how depriving a neuron of contact with its peripheral target affects the development of the cell's central arborization. We focused our attention on the motor neuron cell 3, which normally stimulates dorsal longitudinal muscle fibers to contract. At different locations in the periphery and in embryos of several different stages, we cut the nerve containing the growing axon of cell 3. This surgery led to dramatic overgrowth of cell 3's central dendritic branches, which normally accept synaptic contacts from other neurons, including the inhibitory motor neuron cell 1. When cell 3's peripheral axon was cut relatively early in development, its overgrown central branches eventually retracted. However, cells that were disrupted later in development retained their overextended branches into adulthood. In addition, if the axon was cut close to the ganglion early in development, depriving the cell of contact with any dorsal tissues, the central branches failed to retract and were instead retained into adulthood. Unlike cell 3, the central branches of cell 1, which has the same peripheral target muscles as cell 3, remained unchanged following all axotomy protocols. These results suggest that in at least some neurons contact with peripheral targets can influence development of the central processes that normally mediate synaptic contacts.[Abstract] [Full Text] [Related] [New Search]