These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels.
    Author: Bidasee KR, Maxwell A, Reynolds WF, Patel V, Besch HR.
    Journal: J Pharmacol Exp Ther; 2000 Jun; 293(3):1074-83. PubMed ID: 10869412.
    Abstract:
    The isoflavones tectoridin (TTR) and 3'-hydroxy TTR (3'-TTR) were isolated from an Ayurvedic herbal preparation Vacä and evaluated for their affinity and effect on ryanodine receptors (RyR) using junctional sarcoplasmic reticulum vesicles (JSRVs). In [(3)H]ryanodine displacement binding affinity assays, TTR and 3'-TTR exhibited IC(50) values of 17.3 +/- 1.3 microM (K(d) = 6.7 +/- 0.4 microM) and 6.6 +/- 1.4 microM (K(d) = 2.4 +/- 0.2 microM), respectively, for fast skeletal muscle RyR (RyR1) compared with an IC(50) value for ryanodine of 6.2 +/- 0.4 nM (K(d) = 2.4 nM). TTR demonstrated a 3-fold higher affinity for cardiac RyR (RyR2) [IC(50) value of 5.2 +/- 0.6 microM (K(d) = 0.95 +/- 0.3 microM)] than for RyR1. The displacement isotherms for both TTRs paralleled that for ryanodine, consistent with the notion that all three are likely binding to similar site(s) on the receptors. Calcium efflux from and calcium influx into JSRVs were used to measure function effects of TTRs on binding to RyR. In calcium efflux assays, TTR (up to 1 mM) enhanced the release of (45)Ca(2+) from JSRVs in a concentration-dependent manner (EC(50act) of 750 microM). Higher concentrations deactivated (partially closed) RyR1. 3'-TTR had similar effects, but was approximately 2-fold more potent, exhibiting an EC(50act) value of 480 microM. Using passive calcium influx assays, TTR activated and deactivated RyR1 in a time- and concentration-dependent manner. The aglycone tectorigenin also was effective in displacing [(3)H]ryanodine from RyR1 but not from RyR2. These results demonstrate that TTRs are capable of interacting at ryanodine binding sites to differentially modulate fast skeletal and cardiac calcium-release channels.
    [Abstract] [Full Text] [Related] [New Search]