These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of the Ca2+-sensitive domains of the maxi-K channel in the mouse myometrium during gestation.
    Author: Benkusky NA, Fergus DJ, Zucchero TM, England SK.
    Journal: J Biol Chem; 2000 Sep 08; 275(36):27712-9. PubMed ID: 10871603.
    Abstract:
    Large conductance Ca(2+)-activated K(+) channels (maxi-K channels) are known to modulate uterine activity during gestation. Electrophysiological recordings demonstrate that myometrial maxi-K current is suppressed in term-pregnant compared to non-pregnant mice. We sought to determine whether maxi-K current suppression is due to reduction of maxi-K channel protein or differential expression of maxi-K channel isoforms that vary in their Ca(2+) and voltage sensitivities. Immunoblot analyses show an increase of maxi-K channel protein throughout gestation. Polymerase chain reaction of mouse myometrial cDNA identified four alternatively spliced sites within the maxi-K transcript and three within the Ca(2+)-sensitive "tail" domain. Ribonuclease protection analyses demonstrate that total channel transcript levels mimic protein expression; however transcript levels of alternatively spliced regions of regulatory domains that alter sensitivity to voltage and Ca(2+) differ in their gestational expression. An insert that increases the maxi-K channel sensitivity to voltage and Ca(2+) is present at steady levels throughout gestation, differing from total channel transcript regulation. The insert-less form of this transcript, which reduces the channel voltage and Ca(2+) sensitivity, is not detected until midterm pregnancy. These findings verify that multiple isoforms of the maxi-K channel are present in the mouse myometrium and are regulated differentially during gestation, which is a likely mechanism for modulation of myometrial excitability during pregnancy.
    [Abstract] [Full Text] [Related] [New Search]