These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor.
    Author: Komatsu Y, Yamashita S, Kazama N, Nobuoka K, Ohtsuka E.
    Journal: J Mol Biol; 2000 Jun 23; 299(5):1231-43. PubMed ID: 10873448.
    Abstract:
    A hairpin loop and an oligonucleotide bound to the loop form one-half of the pseudoknot structure. We have designed an allosteric hammerhead ribozyme, which is activated by the introduction of this motif by using a short complementary oligonucleotide as a cofactor. Stem II of the hammerhead ribozyme was substituted with a non-self-complementary loop sequence (loop II) to abolish the cleavage activity. The new ribozyme had almost no cleavage activity of the target RNA. However, it exhibited the cleavage activity in the presence of a cofactor oligoribonucleotide, which is complementary to loop II of the ribozyme. The activity is assumed to be derived from the formation of a pseudo-stem structure between the cofactor oligonucleotide and loop II. The structure including the loop may be similar to the pseudo-half-knot structure. The activation efficiencies of the cofactor oligonucleotides were decreased as the lengths of the oligonucleotides increased, and the ribozyme with a longer loop II was more active than that with a short loop II. Oligoribonucleotides with 3'-dangling purine bases served as efficient cofactors of the ribozyme, and a 2'-O-methyloligonucleotide enhanced the cleavage activity of the ribozyme most efficiently, by as much as about 750-fold as compared with that in the absence of the oligonucleotide. Cofactor oligonucleotides with a cytidine base at the 3'-end also activated a ribozyme with the G10.1.G11.1 mutation, which eliminates the cleavage activity in the wild-type. The binding sites of the oligonucleotide were identified by photo-crosslinking experiments and were found to be the predicted sites in the loop. This is the first report of a design aimed at positively controlling the activity of ribozymes by employing a structural motif. This method can be applied to control the activities of other functional RNAs with hairpin loops.
    [Abstract] [Full Text] [Related] [New Search]