These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112.
    Author: Salmon KA, Freedman O, Ritchings BW, DuBow MS.
    Journal: Virology; 2000 Jun 20; 272(1):85-97. PubMed ID: 10873751.
    Abstract:
    Bacteriophage D3112 is a Mu-like temperate transposable phage of Pseudomonas aeruginosa. Genetic mapping and DNA sequence analysis have identified the left end of the phage genome as encoding the transposase enzyme (A) and the lysogenic (c) repressor. The c open reading frame (ORF), located at the leftmost end of the phage genome and transcribed from right to left, has four possible GTG initiation codons. Using site-directed mutagenesis, each of the four GTG codons was modified to GTA, which cannot serve as an initiation codon. Plasmids were constructed expressing either the wild-type repressor ORF or the ORFs containing the mutated GTA codons. When introduced into Pseudomonas aeruginosa, no immunity to superinfection by D3112 was observed when the second GTG had been mutated. Northern blotting analysis demonstrated that the D3112 c repressor is transcribed as a 900-nt mRNA. The promoter region was defined by transcriptional lacZ fusions and primer extension analyses to bp 972-940 from the left end of the phage genome. When the D3112 c repressor was overexpressed and purified as a fusion protein with a C-terminal six-histidine extension (cts15-His6), it showed high affinity for a 261-bp PvuII fragment localized directly upstream of the c repressor ORF. Our results indicate that although D3112 c shows higher amino acid similarity to the lambda family of repressors than it does to those of Mu and D108, it appears that its structure and function more accurately reflect an evolutionary ancestry with those from transposable coliphages Mu and D108.
    [Abstract] [Full Text] [Related] [New Search]