These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protection against measles virus-induced encephalitis by anti-mimotope antibodies: the role of antibody affinity.
    Author: Olszewska W, Obeid OE, Steward MW.
    Journal: Virology; 2000 Jun 20; 272(1):98-105. PubMed ID: 10873752.
    Abstract:
    Synthetic peptides mimicking a conformational B-cell epitope (M2) of the measles virus fusion protein (MVF) were used for the immunization of BALB/c mice and the anti-peptide and anti-virus antibody titers induced were compared. Of the panel of tested peptides, a chimeric peptide consisting of two copies of a T-helper epitope (residues 288-302 of MVF) and one copy of the mimotope M2 (TTM2) and a multiple antigen peptide with eight copies of M2 (MAP-M2) induced the highest titers of anti-M2 and anti-MV antibodies. Furthermore, peptides TTM2 and MAP-M2 induced antibodies with highest affinity for the mimotope and highest avidity for measles virus. Immunization with the MAP-M2 construct induced high titers of high-affinity anti-M2 antibody despite the absence of a T-helper epitope, and lymphocyte proliferation data suggest that the addition of M2 to the MAP resulted in the generation of a structure capable of stimulating T-cell help. Sera with anti-M2 reactivity were pooled according to affinity values for binding to M2, and high- and low-affinity pools were tested for their ability to prevent MV-induced encephalitis in a mouse model. The high-affinity serum pool conferred protection in 100% of mice, whereas the lower affinity pool conferred protection to only 50% of animals. These results indicate the potential of mimotopes for use as synthetic peptide immunogens and highlight the importance of designing vaccines to induce antibodies of high affinity.
    [Abstract] [Full Text] [Related] [New Search]