These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative study of the molecular mechanisms of oocyte maturation in amphibians. Author: Yoshida N, Mita K, Yamashita M. Journal: Comp Biochem Physiol B Biochem Mol Biol; 2000 Jun; 126(2):189-97. PubMed ID: 10874166. Abstract: Maturation-promoting factor (MPF), a complex of Cdc2 and cyclin B, is the final inducer of oocyte maturation. Its activity is controlled by inhibitory phosphorylation of Cdc2 on Tyr15/Thr14 and activating phosphorylation on Thr161. Full-grown immature oocytes of the African clawed frog Xenopus laevis contain inactive MPF (pre-MPF) that comprises cyclin B-bound Cdc2 phosphorylated on Tyr15/Thr14 and Thr161. The synthesis of Mos, but not cyclin B, after stimulation by the maturation-inducing steroid progesterone, is believed to be necessary for initiating Xenopus oocyte maturation through Tyr15/Thr14 dephosphorylation of pre-MPF. In contrast, amphibians other than Xenopus (and also fishes) employ a different mechanism. Full-grown immature oocytes of these species contain monomeric Cdc2 but not cyclin B. MPF is formed after hormonal stimulation by binding of the newly produced cyclin B to the pre-existing Cdc2 and is immediately activated through Thr161 phosphorylation. Mos/MAP kinase is neither necessary nor sufficient for initiating maturation in fishes and amphibians except for Xenopus. We propose a new model of MPF formation and activation during oocyte maturation that is applicable to all amphibians (as well as fishes), based on a novel concept that pre-MPF is an artificial molecule that is not essential for inducing oocyte maturation.[Abstract] [Full Text] [Related] [New Search]