These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular characterization of a cDNA from the true armyworm Pseudaletia unipuncta encoding Manduca sexta allatotropin peptide(1).
    Author: Truesdell PF, Koladich PM, Kataoka H, Kuniaki Kojima, Suzuki A, N McNeil J, Mizoguchi A, Tobe SS, Bendena WG.
    Journal: Insect Biochem Mol Biol; 2000; 30(8-9):691-702. PubMed ID: 10876112.
    Abstract:
    Allatotropin (AT) is an insect neuropeptide isolated from the tobacco hornworm, Manduca sexta, stimulates juvenile hormone (JH) biosynthesis by the corpora allata. A cDNA isolated from the true armyworm, Pseudaletia unipuncta, encodes a 135 amino acid AT precursor peptide which contains the AT peptide, with processing sites necessary for its endoproteolytic cleavage and amidation, plus two additional peptides of unknown function. The encoded AT peptide is identical to that isolated from M. sexta and Agrius convolvuli. Southern blot analysis indicated that AT is a single copy gene per haploid genome and is present in two allelic forms. A single transcript of approximately 1.5 kilobases was detected by northern blot analysis. The expression of the AT gene was analyzed during development from sixth instar larvae to five day-old moths. Initial expression was observed in late pupae and this expression was maintained throughout the adult stages in both sexes. In one day-old moths, expression was at its lowest level of the stages that express AT mRNA but levels increased in day 3 and day 5 adults. This pattern of AT expression in adult P. unipuncta moths mirrors that of JH biosynthesis and supports the notion that AT may act in the adult stages. Immunohistochemistry and in situ hybridization revealed that AT expression was localized to numerous structures of the nervous system, suggesting that AT may have functions distinct from regulation of JH biosynthesis.
    [Abstract] [Full Text] [Related] [New Search]