These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design, synthesis and structure-affinity relationships of 4-methylidenepiperidine and 4-aryl-1,2,3,6-tetrahydropyridine derivatives as corticotropin-releasing factor1 receptor antagonists. Author: Nakazato A, Kumagai T, Okubo T, Tanaka H, Chaki S, Okuyama S, Tomisawa K. Journal: Bioorg Med Chem; 2000 May; 8(5):1183-93. PubMed ID: 10882028. Abstract: Recently, various non-peptide corticotropin-releasing factor1 (CRF1) receptor antagonists have been reported. Structure-affinity relationships (SARs) of non-peptide CRF antagonists suggest that such antagonists can be constructed of three units: a hydrophobic unit (Up-Area), a proton accepting unit (Central-Area), and an aromatic unit (Down-Area). Our interest focused on the Up-Area in deriving the novel methylidenepiperidine derivatives 8-10 and 4-aryl-1,2,3,6-tetrahydropyridine derivatives 11-13 as non-peptide CRF1 receptor antagonists. Compounds 8a and 11a had moderate affinity for CRF1 receptor, but compounds 9, 10, 12 and 13 did not exhibit CRF1 receptor affinity. Modification of derivatives 11 afforded compounds 11i (CRA1001) and 11x (CRA1000), which had high affinity and selectivity for CRF1 receptors with potent anxiolytic-like and antidepressant-like properties in some experimental animal models. These findings suggest that the hydrophonic unit (Up-Area) may be useful for design of CRF1 antagonists. We report here the design, synthesis and SARs of the derivatives 8 and 11 and isosteres 9, 10, 12 and 13.[Abstract] [Full Text] [Related] [New Search]