These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The influence of the benzodiazepine receptor antagonist flumazenil on the anxiolytic-like effects of CGP 37849 and ACPC in rats. Author: Przegaliński E, Tatarczyńska E, Chojnacka-Wójcik E. Journal: Neuropharmacology; 2000 Jul 24; 39(10):1858-64. PubMed ID: 10884566. Abstract: In this paper we examined the effect of flumazenil (Ro 15-1788, 10 mg/kg), a benzodiazepine receptor antagonist, on the anticonflict activity of DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP 37849), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and 1-aminocyclopropanecarboxylic acid (ACPC), a partial agonist at glycine(B) receptors, in the Vogel conflict drinking test in rats. The effect of flumazenil on the anxiolytic-like (in the plus-maze test) and the anticonvulsant (in the maximal electroshock-induced seizures) activities of CGP 37849 in rats was also studied. Diazepam was used as a reference drug. CGP 37849 (2. 5-5 mg/kg), ACPC (50-200 mg/kg) and diazepam (2.5-5 mg/kg) significantly and dose-dependently increased the number of shocks accepted during experimental sessions in the conflict drinking test. Flumazenil partly but significantly reduced the anticonflict effect of CGP 37849, and it fully blocked the anticonflict effect of ACPC and diazepam. CGP 37849 (2.5-5 mg/kg) and diazepam (2.5-5 mg/kg) were also active in the plus-maze test, as they significantly increased the percentage of the time spent in and entries into the open arms of the plus-maze, both those effects having been antagonized by flumazenil. Flumazenil alone was inactive in both the conflict drinking and the plus-maze tests. In the maximal electroshock-induced seizures, both CGP 37849 (2.5-5 mg/kg) and diazepam (5-10 mg/kg) produced anticonvulsant effects, of which only that of diazepam was antagonized by flumazenil. The results of the present study showing antagonism of flumazenil towards the anxiolytic-like effects of CGP 37849 and ACPC suggest involvement of benzodiazepine receptors in such an activity of the NMDA and glycine(B) receptor ligands, respectively, which may be due to a possible interaction between NMDA and GABA/benzodiazepine systems. The lack of effect of the benzodiazepine antagonist on the anticonvulsant activity of CGP 37849 indicates that involvement of benzodiazepine receptors in the pharmacological action of the NMDA antagonist is not a general phenomenon.[Abstract] [Full Text] [Related] [New Search]