These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. Author: Wilson JM, Laurent P, Tufts BL, Benos DJ, Donowitz M, Vogl AW, Randall DJ. Journal: J Exp Biol; 2000 Aug; 203(Pt 15):2279-96. PubMed ID: 10887067. Abstract: Teleost fishes, living in fresh water, engage in active ion uptake to maintain ion homeostasis. Current models for NaCl uptake involve Na(+) uptake via an apical amiloride-sensitive epithelial Na(+) channel (ENaC), energized by an apical vacuolar-type proton pump (V-ATPase) or alternatively by an amiloride-sensitive Na(+)/H(+) exchange (NHE) protein, and apical Cl(-) uptake mediated by an electroneutral, SITS-sensitive Cl(-)/HCO(3-) anion-exchange protein. Using non-homologous antibodies, we have determined the cellular distributions of these ion-transport proteins to test the predicted models. Na(+)/K(+)-ATPase was used as a cellular marker for differentiating branchial epithelium mitochondria-rich (MR) cells from pavement cells. In both the freshwater tilapia (Oreochromis mossambicus) and rainbow trout (Oncorhynchus mykiss), V-ATPase and ENaC-like immunoreactivity co-localized to pavement cells, although apical labelling was also found in MR cells in the trout. In the freshwater tilapia, apical anion-exchanger-like immunoreactivity is found in the MR cells. Thus, a freshwater-type MR chloride cell exists in teleost fishes. The NHE-like immunoreactivity is associated with the accessory cell type and with a small population of pavement cells in tilapia.[Abstract] [Full Text] [Related] [New Search]