These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ability of surfactant headgroup size to alter lipid and antioxidant oxidation in oil-in-water emulsions.
    Author: Silvestre MP, Chaiyasit W, Brannan RG, McClements DJ, Decker EA.
    Journal: J Agric Food Chem; 2000 Jun; 48(6):2057-61. PubMed ID: 10888498.
    Abstract:
    Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. To evaluate how surfactant headgroup size influences lipid oxidation rates, emulsions were prepared with polyoxyethylene 10 stearyl ether (Brij 76) or polyoxyethylene 100 stearyl ether (Brij 700), which are structurally identical except for their hydrophilic headgroups, with Brij 700 containing 10 times more polyoxyethylene groups than Brij 76. Fe(2+)-promoted decomposition of cumene hydroperoxide was lower in Brij 700-stabilized than in Brij 76-stabilized hexadecane emulsions. Fe(2+)-promoted alpha-tocopherol oxidation rates were similar in hexadecane emulsion regardless of surfactant type. Brij 700 decreased production of hexanal from methyl linoleate and the formation of lipid peroxides and propanal from salmon oil compared to emulsions stabilized by Brij 76. These results indicate that emulsion droplet interfacial thickness could be an important determinant in the oxidative stability of food emulsions.
    [Abstract] [Full Text] [Related] [New Search]