These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: P2Y purinoceptor activation mobilizes intracellular Ca2+ and induces a membrane current in rat intracardiac neurones.
    Author: Liu DM, Katnik C, Stafford M, Adams DJ.
    Journal: J Physiol; 2000 Jul 15; 526 Pt 2(Pt 2):287-98. PubMed ID: 10896718.
    Abstract:
    1. The mobilization of Ca2+ by purinoceptor activation and the relative contributions of intra- and extracellular sources of Ca2+ were investigated using microfluorimetric measurements of fura-2 loaded in cultured neurones from rat intracardiac ganglia. 2. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed expression of mRNA for the G protein-coupled P2Y2 and P2Y4 receptors. 3. Brief application of either 300 microM ATP or 300 microM UTP caused transient increases in [Ca2+]i of 277 +/- 22 nM and 267 +/- 39 nM, respectively. Removal of external Ca2+ did not significantly reduce these [Ca2+]i responses. 4. The order of purinoceptor agonist potency for [Ca2+]i increases was ATP = UTP > 2-MeSATP > ADP >> adenosine, consistent with the profile for P2Y2 purinoceptors. ATP- and UTP-induced rises in [Ca2+]i were completely and reversibly blocked by 10 microM PPADS (a P2 purinoceptor antagonist) and partially inhibited by 100 microM suramin (a relatively non-specific purinoceptor antagonist). 5. In the presence of the endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (10 microM) in Ca2+-free media, the [Ca2+]i responses evoked by ATP were progressively decreased and abolished. 6. ATP- and UTP-induced [Ca2+]i rises were insensitive to pertussis toxin, caffeine (5 mM) and ryanodine (10 microM) but were significantly reduced by U-73122, a phospholipase C (PLC) inhibitor. 7. In fura-2-loaded cells, perforated patch whole-cell recordings show that ATP and UTP evoked slow outward currents at -60 mV, concomitant with the rise in [Ca2+]i, in approximately 30 % of rat intracardiac neurones. 8. In conclusion, these results suggest that in r intracardiac neurones, ATP binds to P2Y2 purinoceptors to transiently raise [Ca2+]i and activate an outward current. The signalling pathway appears to involve a PTX-insensitive G protein coupled to PLC generation of IP3 which triggers the release of Ca2+ from a ryanodine-insensitive Ca2+ store(s).
    [Abstract] [Full Text] [Related] [New Search]