These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hepatoprotection by dimethyl sulfoxide. III. Role of inhibition of the bioactivation and covalent bonding of chloroform.
    Author: Lind RC, Begay CK, Gandolfi AJ.
    Journal: Toxicol Appl Pharmacol; 2000 Jul 15; 166(2):145-50. PubMed ID: 10896856.
    Abstract:
    Dimethyl sulfoxide (DMSO) has previously been shown to have the ability to attenuate chloroform (CHCl(3))-induced liver injury in the naive rat even when administered 24 h after the toxicant. These studies were undertaken to determine if the protective action by late administration of DMSO is due to an inhibition of the bioactivation of CHCl(3). This was done by comparing the cytochrome P450 inhibitors, diallyl sulfide (DAS), and aminobenzotriazole (ABT) to DMSO for their protective efficacy when administered 24 h after CHCl(3) exposure. In addition, (14)CHCl(3) was utilized to measure the effect of DMSO and ABT on the covalent binding of CHCl(3) in the liver following their late administration. Male Sprague-Dawley rats (300-350 g) received 0.75 ml/kg CHCl(3) po. Twenty-four hours later, they received ip injection of 2 ml/kg DMSO, 100 mg/kg DAS, or 30 mg/kg ABT. Plasma ALT activities and quantitation of liver injury by light microscopy at 48 h after CHCl(3) dosing indicated that all three treatments were equally effective at protecting the liver. A detailed study of the time course of injury development indicated that the protective action of DMSO was occurring within 10 h of its administration. Therefore, in the radiolabel studies, rats were killed 24-34 h after receiving 0.75 ml/kg CHCl(3) (30 microCi/kg (14)CHCl(3)) po. Treatment with ABT at 24 h after (14)CHCl(3) dosing decreased the covalent binding of (14)C to hepatic protein by 35% and reduced the amount of (14)C in the blood by 50% by 10 h after its administration. DMSO treatment did not significantly affect any of these parameters. The lack of effect by late administration of DMSO on the covalent binding of CHCl(3) would indicate that DMSO may offer protection by mechanisms other than inhibition of the bioactivation of CHCl(3). These studies also indicate that specific cytochrome P450 inhibitors may be of benefit in clinical situations to help treat the delayed onset hepatitis that can result following poisoning with an organohalogen, even if the antidotes are administered a number of hours after the initial exposure.
    [Abstract] [Full Text] [Related] [New Search]