These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The very small-conductance K+ channel KvLQT1 and epithelial function.
    Author: Bleich M, Warth R.
    Journal: Pflugers Arch; 2000 Jun; 440(2):202-6. PubMed ID: 10898519.
    Abstract:
    KvLQT1 (KCNQ1) is a very small conductance K+ channel distributed widely in epithelial and non-epithelial tissues. Its specific biophysical and pharmacological properties are determined by the regulatory subunits IsK (KCNE1) and MiRP2 (KCNE3). In epithelial cells of the inner ear, pancreas, and airways it interacts with IsK to conduct a voltage-gated and slowly activating K+ current. In the colon it coassembles with KCNE3 to conduct an instantaneous and constitutively active K+ current. In Cl- secretory epithelia, such as the colon and pancreas, this K+ channel provides the driving force for Cl- exit and is located in the basolateral membrane. In the inner ear it enables luminal secretion of K+ into the endolymphatic space. The functional relevance of KvLQT1 to epithelial function is revealed by blocking it pharmacologically or by studying animals with a genetic defect for it, which result in the breakdown of colonic Cl- secretion and endolymph production, respectively. KvLQT1 K+ channels are activated via cAMP or Ca2+ and inhibited by the chromanol 293B. Interaction with as yet unknown regulatory subunits may determine the properties of KvLQT1 in the rectal gland and other epithelial tissues in which KvLQT1 is not inhibited by chromanols.
    [Abstract] [Full Text] [Related] [New Search]