These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation of the startle response during human gait. Author: Nieuwenhuijzen PH, Schillings AM, Van Galen GP, Duysens J. Journal: J Neurophysiol; 2000 Jul; 84(1):65-74. PubMed ID: 10899184. Abstract: While many studies have shown that there is a phase-dependent modulation of proprioceptive and exteroceptive reflexes during gait, little is known about such modulation for auditory reflexes. To examine how startle reactions are incorporated in an ongoing gait pattern, unexpected auditory stimuli were presented to eight healthy subjects in six phases of the step cycle during walking on a treadmill at 4 km/h. For both legs, electromyographic activity (EMG) was recorded in the biceps femoris (BF), the rectus femoris (RF), the tibialis anterior (TA), and the soleus (SO). In addition, stance and swing phases of both legs, along with knee angles of both legs and the left ankle angle, were measured. All subjects showed various response peaks. Responses with latencies of approximately 60 ms (F1), approximately 85 ms (F2), and approximately 145 ms (F3) were found. The amplitude of the reflex responses was dependent on the timing of the startle stimulus in the step cycle. Although the startle response habituated rapidly, the phase-dependent modulation pattern generally remained the same. The phase-dependent amplitude modulations were not strictly correlated with the modulation of the background activity. The TA even showed a transition from facilitatory F2 responses during stance to suppressive responses during midswing. Responses were observed in both flexors and extensors, often in coactivation, especially during stance. Furthermore the gait characteristics showed a shortening of the subsequent step cycle and a small decrease in the range of motion of ankle and knees. These results suggest that the responses are adapted to achieve extra stability dependent on the phase of the step cycle. However, even in the first trials, the changes in kinematics were small allowing a smooth progression of gait.[Abstract] [Full Text] [Related] [New Search]