These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Motor-unit synchronization is not responsible for larger motor-unit forces in old adults.
    Author: Semmler JG, Steege JW, Kornatz KW, Enoka RM.
    Journal: J Neurophysiol; 2000 Jul; 84(1):358-66. PubMed ID: 10899210.
    Abstract:
    Motor-unit synchronization, which is a measure of the near simultaneous discharge of action potentials by motor units, has the potential to influence spike-triggered average force and the steadiness of a low-force isometric contraction. The purpose of the study was to estimate the contribution of motor-unit synchronization to the larger spike-triggered average forces and the decreased steadiness exhibited by old adults. Eleven young (age 19-30 yr) and 14 old (age 63-81 yr) adults participated in the study. Motor-unit activity was recorded with two fine-wire intramuscular electrodes in the first dorsal interosseus muscle during isometric contractions that caused the index finger to exert an abduction force. In a separate session, steadiness measurements were obtained during constant-force isometric contractions at target forces of 2.5, 5, 7. 5, and 10% of the maximum voluntary contraction (MVC) force. Mean (+/-SD) motor-unit forces measured by spike-triggered averaging were larger in old (15.5 +/- 12.1 mN) compared with young (7.3 +/- 5.7 mN) adults, and the differences were more pronounced between young (8.7 +/- 6.4 mN) and old (19.9 +/- 12.2 mN) men. Furthermore, the old adults had a reduced ability to maintain a steady force during an isometric contraction, particularly at low target forces (2.5 and 5% MVC). Mean (+/-SD) motor-unit synchronization, expressed as the frequency of extra synchronous discharges above chance in the cross-correlogram, was similar in young [0.66 +/- 0.4 impulses/s (imp/s); range, 0.35-1.51 imp/s; 53 pairs) and old adults (0.72 +/- 0.5 imp/s; range, 0.27-1.38 imp/s; 56 pairs). The duration of synchronous peaks in the cross-correlogram was similar for each group (approximately 16 ms). These data suggest that motor-unit synchronization is not responsible for larger spike-triggered average forces in old adults and that motor-unit synchronization does not contribute to the decreased steadiness of low-force isometric contractions observed in old adults.
    [Abstract] [Full Text] [Related] [New Search]