These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin-like growth factor-I promotes myelination of peripheral sensory axons.
    Author: Russell JW, Cheng HL, Golovoy D.
    Journal: J Neuropathol Exp Neurol; 2000 Jul; 59(7):575-84. PubMed ID: 10901228.
    Abstract:
    Insulin-like growth factor-I (IGF-I) in vivo or in the presence of other permissive factors can promote myelination in the central nervous system. In the current study, we examine the role of IGF-I in the myelination of peripheral nerves. In rat cocultures of dorsal root ganglia (DRG) and Schwann cells (SC) grown in serum- and insulin-free defined medium, IGF-I induces a dose dependent upregulation in myelin proteins such as P0, corresponding to maximal SC ensheathment. Furthermore, IGF-I is essential in promoting a dose-dependent, long-term myelination of DRG sensory axons. In the absence of IGF-I, axons and SC survive, but fail to myelinate. In the presence of 10 nM IGF-I, 59% of axons are myelinated at 21 days, whereas in the absence of IGF-I myelination fails to occur. Maximum SC ensheathment occurs 48 hours after addition of IGF-I. If IGF-I is withdrawn at 48 hours, axon segregation by SC persists, however, most axons and SC do not exhibit a one-to-one relationship and little myelination is observed. IGF-I is important in myelination and is critical not only for initial SC ensheathment of the axon and upregulation of myelin proteins, but also for sustained myelination. Furthermore, IGF-I associated axonal size is not the sole determinant for myelination.
    [Abstract] [Full Text] [Related] [New Search]