These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide and cytochrome c oxidase: mechanisms of inhibition and NO degradation. Author: Sarti P, Giuffré A, Forte E, Mastronicola D, Barone MC, Brunori M. Journal: Biochem Biophys Res Commun; 2000 Jul 21; 274(1):183-7. PubMed ID: 10903916. Abstract: NO inhibits mitochondrial respiration by reacting with either the reduced or the oxidized binuclear site of cytochrome c oxidase, leading respectively to accumulation of cytochrome a(2+)(3)-NO or cytochrome a(3+)(3)-NO(-)(2) species. Exploiting the unique light sensitivity of the cytochrome a(2+)(3)-NO, we show that under turnover conditions, depending on the cytochrome c(2+) concentration, either the cytochrome a(2+)(3)-NO or the nitrite-bound enzyme is formed. The predominance of one of the two inhibitory pathways depends on the occupancy of the turnover intermediates. In the dark, the respiration recovers at the rate of NO dissociation (k' = 0.01 s(-1) at 37 degrees C). Illumination of the sample speeds up recovery rate only at higher reductant concentrations, indicating that the inhibited species is cytochrome a(2+)(3)-NO. When the reaction occurs with the oxidized binuclear site, light has no effect and NO is oxidized to harmless nitrite eventually released in the bulk, accounting for catalytic NO degradation.[Abstract] [Full Text] [Related] [New Search]