These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new thiazolidinedione, NC-2100, which is a weak PPAR-gamma activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice.
    Author: Fukui Y, Masui S, Osada S, Umesono K, Motojima K.
    Journal: Diabetes; 2000 May; 49(5):759-67. PubMed ID: 10905484.
    Abstract:
    Thiazolidinediones (TZDs) reduce insulin resistance in type 2 diabetes by increasing peripheral uptake of glucose, and they bind to and activate the transcriptional factor peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Studies have suggested that TZD-induced activation of PPAR-gamma correlates with antidiabetic action, but the mechanism by which the activated PPAR-gamma is involved in reducing insulin resistance is not known. To examine whether activation of PPAR-gamma directly correlates with antidiabetic activities, we compared the effects of 4 TZDs (troglitazone, pioglitazone, BRL-49653, and a new derivative, NC-2100) on the activation of PPAR-gamma in a reporter assay, transcription of the target genes, adipogenesis, plasma glucose and triglyceride levels, and body weight using obese KKAy mice. There were 10- to 30-fold higher concentrations of NC-2100 required for maximal activation of PPAR-gamma in a reporter assay system, and only high concentrations of NC-2100 weakly induced transcription of the PPAR-gamma but not PPAR-alpha target genes in a whole mouse and adipogenesis of cultured 3T3L1 cells, which indicates that NC-2100 is a weak PPAR-gamma activator. However, low concentrations of NC-2100 efficiently lowered plasma glucose levels in KKAy obese mice. These results strongly suggest that TZD-induced activation of PPAR-gamma does not directly correlate with antidiabetic (glucose-lowering) action. Furthermore, NC-2100 caused the smallest body weight increase of the 4 TZDs, which may be partly explained by the finding that NC-2100 efficiently induces uncoupling protein (UCP)-2 mRNA and significantly induces UCP1 mRNA in white adipose tissue (WAT). NC-2100 induced UCP1 efficiently in mesenteric WAT and less efficiently in subcutaneous WAT, although pioglitazone and troglitazone also slightly induced UCP1 only in mesenteric WAT. These characteristics of NC-2100 should be beneficial for humans with limited amounts of brown adipose tissue.
    [Abstract] [Full Text] [Related] [New Search]