These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sonochemical degradation of chlorophenols in water. Author: Nagata Y, Nakagawa M, Okuno H, Mizukoshi Y, Yim B, Maeda Y. Journal: Ultrason Sonochem; 2000 Jul; 7(3):115-20. PubMed ID: 10909729. Abstract: Sonochemical degradation of dilute aqueous solutions of 2-, 3- and 4-chlorophenol and pentachlorophenol has been investigated under air or argon atmosphere. The degradation follows first-order kinetics in the initial state with rates in the range 4.5-6.6 microM min-1 under air and 6.0-7.2 microM min-1 under argon at a concentration of 100 microM of chlorophenols. The rate of OH radical formation from water is 19.8 microM min-1 under argon and 14.7 microM min-1 under air in the same sonolysis conditions. The sonolysis of chlorophenols is effectively inhibited, but not completely, by the addition of t-BuOH, which is known to be an efficient OH radical scavenger in aqueous sonolysis. This suggests that the main degradation of chlorophenols proceeds via reaction with OH radicals; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fe(II) ions accelerates the degradation. This is probably due to the regeneration of OH radicals from hydrogen peroxide, which would be formed from recombination of OH radicals and which may contribute a little to the degradation. The ability to inhibit bacterial multiplication of pentachlorophenol decreases with ultrasonic irradiation.[Abstract] [Full Text] [Related] [New Search]