These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha.
    Author: Johnson BW, Cepero E, Boise LH.
    Journal: J Biol Chem; 2000 Oct 06; 275(40):31546-53. PubMed ID: 10913120.
    Abstract:
    Cells can respond differently to anti-CD95 antibody treatment. Type I cells show strong activation of caspase-8 and directly activate caspase-3. Type II cells weakly activate caspase-8 and must amplify their death signal through the mitochondria. These cells can be rescued by Bcl-x(L). Here we show that tumor necrosis factor-alpha induces both Type I and II pathways, which can be inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-fmk) and Bcl-x(L) in a cooperative fashion. Death induced in the presence of Z-VAD-fmk was associated with a partial inhibition of caspase-8, whereas no effects on cytochrome c release, DEVDase activity, and intranucleosomal DNA cleavage were observed. Thus, Z-VAD-fmk is likely weakening the death-inducing signaling complex-mediated activation of caspase-8 and diverting cells to a Type II pathway. Bcl-x(L) cooperates with Z-VAD-fmk by blocking the Type II pathway at the level of cytochrome c release. Surprisingly, although Bcl-x(L) was able to block cytochrome c release, it was unable to block mitochondrial depolarization, suggesting that these are separate events. This suggests that mitochondria occupy two places in apoptotic signaling, as initiators of apoptosis through the release of cytochrome c as well as a target for effector caspases.
    [Abstract] [Full Text] [Related] [New Search]