These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pyruvate carboxylase from Mycobacterium smegmatis: stabilization, rapid purification, molecular and biochemical characterization and regulation of the cellular level. Author: Mukhopadhyay B, Purwantini E. Journal: Biochim Biophys Acta; 2000 Jul 26; 1475(3):191-206. PubMed ID: 10913817. Abstract: This is the first report on the purification and characterization of an anaplerotic enzyme from a Mycobacterium. The anaplerotic reactions play important roles in the biochemical differentiation of mycobacteria into non-replicating stages. We have purified and characterized a pyruvate carboxylase (PYC) from Mycobacterium smegmatis and cloned and sequenced its gene. We have developed a very rapid and efficient purification protocol that provided PYC with very high specific activities (up to 150 U/mg) that remained essentially unchanged over a month. The enzyme was found to be a homomultimer of 121 kDa subunits, mildly thermophilic, absolutely dependent on acyl-CoAs for activity and inhibited by ADP, by excess Mg(2+), Co(2+), and Mn(2+), by aspartate, but not by glutamate and alpha-ketoglutarate. Supplementation of minimal growth medium with aspartate did not lower the cellular PYC level, rather doubled it; with glutamate the level remained unchanged. These observations would not fit the idea that the M. smegmatis enzyme fulfills a straightforward anaplerotic function; in a closely related organism, Corynebacterium glutamicum, PYC is the major anaplerotic enzyme. Growth on glucose provided 2-fold higher cellular PYC level than that observed with glycerol. The PYCs of M. smegmatis and Mycobacterium tuberculosis were highly homologous to each other. In M. smegmatis, M. tuberculosis and M. lepra, pyc was flanked by a putative methylase and a putative integral membrane protein genes in an identical operon-like arrangement. Thus, M. smegmatis could serve as a model for studying PYC-related physiological aspects of mycobacteria. Also, the ease of purification and the extraordinary stability could make the M. smegmatis enzyme a model for studying the structure-function relationships of PYCs in general. It should be noted that no crystal structure is available for this enzyme of paramount importance in all three domains of life, archaea, bacteria, and eukarya.[Abstract] [Full Text] [Related] [New Search]