These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Angiotensin-(1-7) causes endothelium-dependent relaxation in canine middle cerebral artery.
    Author: Feterik K, Smith L, Katusic ZS.
    Journal: Brain Res; 2000 Aug 04; 873(1):75-82. PubMed ID: 10915812.
    Abstract:
    The heptapeptide, angiotensin-(1-7), is an active member of the renin-angiotensin system. The present study was designed to characterize the role of endothelium in relaxations of large cerebral arteries to angiotensin-(1-7). Rings of canine middle cerebral arteries were suspended in organ chambers for isometric force recording. The levels of cyclic guanosine 3',5'-monophosphate (cGMP) were assessed by radioimmunoassay. During contraction to uridine 5'-triphosphate (UTP, 3x10(-6) to 10(-5) mol/l), angiotensin-(1-7) (10(-9) to 3x10(-5) mol/l) caused concentration-dependent relaxations in arteries with endothelium, but not in endothelium-denuded vessels. Angiotensin-(1-7) significantly increased formation of cGMP. Nitric oxide synthase inhibitor, N-omega-nitro-L-arginine methyl ester (L-NAME, 3x10(-4) mol/l), and selective soluble guanylate cyclase inhibitor, 1 H-[1,2, 4]oxadiazolo[4,3-a]quinozalin-1-one (ODQ, 3x10(-6) mol/l), abolished angiotensin-(1-7)-induced relaxations. Angiotensin receptor antagonists, losartan (10(-5) mol/l), PD 123319 (10(-5) mol/l), [Sar(1),Thr(8)]-angiotensin II (10(-5) mol/l) [Sar(1),Val(5), Ala(8)]-angiotensin II (10(-5) mol/l) or [7-D-Ala]-angiotensin 1-7 (10(-6) mol/l) did not affect these relaxations. However, angiotensin-converting enzyme inhibitor, captopril (10(-5) mol/l) augmented relaxations to angiotensin-(1-7). Finally, bradykinin B(2) receptor antagonist, [D-Arg(0),Hyp(3),Thi(5),D-Tic(7), Oic(8)]-bradykinin (HOE 140, 5x10(-8) mol/l) significantly reduced the effect of angiotensin-(1-7), while bradykinin B(1) receptor antagonist, des-Arg(9), [Leu(8)]-bradykinin (6x10(-9) mol/l) did not influence the vascular response to the heptapeptide. These findings indicate that (1) angiotensin-(1-7) produces relaxation of canine middle cerebral arteries by the release of nitric oxide from endothelial cells, (2) angiotensin receptors do not mediate endothelium-dependent relaxations to the heptapeptide, and (3) this effect appears to be dependent on activation of local production of kinins. Our studies support the concept that angiotensin-(1-7), as a natural vasodilator hormone, may counterbalance the hemodynamic actions of angiotensin II.
    [Abstract] [Full Text] [Related] [New Search]