These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of Bax or Bcl-2 overexpression on the ceramide-dependent apoptotic pathway in glioma cells.
    Author: Sawada M, Nakashima S, Banno Y, Yamakawa H, Takenaka K, Shinoda J, Nishimura Y, Sakai N, Nozawa Y.
    Journal: Oncogene; 2000 Jul 20; 19(31):3508-20. PubMed ID: 10918609.
    Abstract:
    Ceramide has recently been regarded as a potential mediator of apoptosis. In the present study, the effects of Bcl-2 and Bax on the ceramide-mediated apoptotic pathways were examined in glioma cells overexpressing Bcl-2 or Bax. Etoposide, cisplatin and tumor necrosis factor-alpha induced apoptosis of C6 rat glioma cells which was associated with ceramide formation due to activation of neutral sphingomyelinase, followed by release of mitochondrial cytochrome c into the cytosol and activation of caspases-9 and -3. The growth of C6 cells stably overexpressing either Bcl-2 or Bax was almost equal to that of the vector-transfected cells. Bax overexpression enhanced etoposide-induced apoptosis through acceleration of cytochrome c release and caspases activation. However, Bax had no effect on ceramide formation. Similar findings were obtained in C6 cells and U87-MG human glioblastoma cells which were transiently overexpressed with Bax. In contrast, Bcl-2 overexpression resulted in a retardation of the apoptotic process via prevention of cytochrome c release and caspases activation, and ceramide formation was also blocked when Bcl-2 was highly overexpressed in glioma cells. In addition, transient overexpression of Bcl-xL also exerted inhibitory effects on ceramide formation and apoptotic cell death induced by etoposide. These results indicate that Bax promotes apoptosis regardless of ceramide formation and that Bcl-2 or Bcl-xL prevents ceramide formation by repressing neutral sphingomyelinase as well as ceramide-induced cytochrome c release. Oncogene (2000) 19, 3508 - 3520
    [Abstract] [Full Text] [Related] [New Search]