These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: APC(ste9/srw1) promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. Author: Blanco MA, Sánchez-Díaz A, de Prada JM, Moreno S. Journal: EMBO J; 2000 Aug 01; 19(15):3945-55. PubMed ID: 10921876. Abstract: Fission yeast ste9/srw1 is a WD-repeat protein highly homologous to budding yeast Hct1/Cdh1 and Drosophila Fizzy-related that are involved in activating APC/C (anaphase-promoting complex/cyclosome). We show that APC(ste9/srw1) specifically promotes the degradation of mitotic cyclins cdc13 and cig1 but not the S-phase cyclin cig2. APC(ste9/srw1) is not necessary for the proteolysis of cdc13 and cig1 that occurs at the metaphase-anaphase transition but it is absolutely required for their degradation in G(1). Therefore, we propose that the main role of APC(ste9/srw1) is to promote degradation of mitotic cyclins when cells need to delay or arrest the cell cycle in G(1). We also show that ste9/srw1 is negatively regulated by cdc2-dependent protein phosphorylation. In G(1), when cdc2-cyclin kinase activity is low, unphosphorylated ste9/srw1 interacts with APC/C. In the rest of the cell cycle, phosphorylation of ste9/srw1 by cdc2-cyclin complexes both triggers proteolysis of ste9/srw1 and causes its dissociation from the APC/C. This mechanism provides a molecular switch to prevent inactivation of cdc2 in G(2) and early mitosis and to allow its inactivation in G(1).[Abstract] [Full Text] [Related] [New Search]