These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversible cross-linking and CO treatment as an approach in red cell stabilization.
    Author: Bakaltcheva I, Leslie S, MacDonald V, Spargo B, Rudolph A.
    Journal: Cryobiology; 2000 Jun; 40(4):343-59. PubMed ID: 10924266.
    Abstract:
    We explored the use of the reversible cross-linking reagent dimethyl 3,3-dithiobispropionimidate (DTBP) in combination with CO treatment as an approach to stabilizing erythrocyte structure and function. Erythrocytes were cross-linked with different concentrations of DTBP for different times. DTBP increased erythrocyte osmotic stability, blocked lysolecithin-induced echinocytosis, and decreased erythrocyte deformability in a concentration- and time-dependent manner. Reversal of the cross-linking with the reducing agent dithioerythritol (DTE) restored osmotic fragility and response to lysolecithin as well as deformability. Complete reversal, however, is a function of the DTBP concentration and the time of cross-linking. The effects of cross-linking with 5 mM DTBP for 1 h were completely reversible after treatment with 10 mM DTE for 20 min. Longer incubation times or higher concentrations of DTBP resulted in partial reversal by DTE of the effects produced by DTBP. Cross-linking and reversal only slightly reduced the ATP content. The hemoglobin contained in the cross-linked and reversed cells could still undergo reversible oxygenation and deoxygenation. Erythrocytes were pretreated with CO, cross-linked with 5 mM DTBP for 1 or 3 h, loaded with a solution containing 500 mM glucose for 24 h, and freeze-dried in a medium containing 15% (w/v) albumin. Rehydration followed in distilled water. Complete recovery, measured as the percentage of free hemoglobin, was achieved for cells cross-linked with 5 mM DTBP for 3 h and freeze-dried to a final water content of 10-15%. Non-cross-linked cells lysed 100% on rehydration in distilled water. No methemoglobin (MetHb) formation as a result of freeze-drying was detected in CO-treated cells. In non-CO-treated cells 20% of the Hb was converted to MetHb.
    [Abstract] [Full Text] [Related] [New Search]