These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. Author: Yokoyama H, Gunasegaram S, Harding SE, Avkiran M. Journal: J Am Coll Cardiol; 2000 Aug; 36(2):534-40. PubMed ID: 10933369. Abstract: OBJECTIVES: To determine sarcolemmal Na+/H+ exchanger (NHE) activity and expression in human ventricular myocardium. BACKGROUND: Although the sarcolemmal NHE has been implicated in various physiological and pathophysiological phenomena in animal studies, its activity and expression in human myocardium have not been studied. METHODS: Ventricular myocardium was obtained from unused donor hearts with acute myocardial dysfunction (n = 5) and recipient hearts with chronic end stage heart failure (n = 11) through a transplantation program. Intracellular pH (pHi) was monitored in enzymatically isolated single ventricular myocytes by microepifluorescence. As the index of sarcolemmal NHE activity, the rate of H+ efflux at a pHi of 6.90 J(H6.9)) was determined after the induction of intracellular acidosis in bicarbonate-free medium. Na+/H+ exchanger isoform 1 (NHE1) expression in ventricular myocardium was determined by immunoblot analysis. RESULTS: Human ventricular myocytes exhibited readily detectable sarcolemmal NHE activity after the induction of intracellular acidosis, and this activity was suppressed by the NHE1-selective inhibitor HOE-642 (cariporide) at 1 micromol/L. Sarcolemmal NHE activity of myocytes was significantly greater in recipient hearts (JH6.9 = 1.95+/-0.18 mmol/L/min) than it was in unused donor hearts (J(H6.9 = 1.06+/-0.15 mmol/L/min). In contrast, NHE1 protein was expressed in similar abundance in ventricular myocardium from both recipient and unused donor hearts. CONCLUSIONS: Sarcolemmal NHE activity of human ventricular myocytes arises from the NHE1 isoform and is inhibited by HOE-642. Sarcolemmal NHE activity is significantly greater in recipient hearts with chronic end-stage heart failure than it is in unused donor hearts, and this difference is likely to arise from altered posttranslational regulation.[Abstract] [Full Text] [Related] [New Search]