These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of direct infusion and on-line liquid chromatography/electrospray ionization mass spectrometry for the analysis of nucleic acids.
    Author: Huber CG, Krajete A.
    Journal: J Mass Spectrom; 2000 Jul; 35(7):870-7. PubMed ID: 10934440.
    Abstract:
    The applicability of ion-pair reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry (IP-RP-HPLC/ESI-MS) and direct infusion/ESI-MS to the characterization of nucleic acid mixtures was evaluated by the analysis of the reaction products obtained from solid-phase synthesis of a 39-mer oligonucleotide. IP-RP-HPLC/ESI-MS was performed using 200 microm i.d. capillary columns packed with octadecylated, micropellicular poly(styrene-divinylbenzene) particles and applying gradients of acetonitrile in 50 mM triethylammonium bicarbonate (TEAB). Three different solvent systems were utilized for direct infusion/ESI-MS with removal of metal cations by on-line cation exchange: (1) 10 mM triethylamine (TEA) in 50% aqueous acetonitrile, (2) 2.2 mM TEA, 400 mM hexafluoro-2-propanol (HFIP) in 20% aqueous methanol and (3) 50 mM TEAB in 10% aqueous acetonitrile. Owing to its separation capability, the highest selectivity and specificity were achieved with IP-RP-HPLC/ESI-MS, which, apart form the 39-mer target sequence, allowed the identification of two isobutyryl-protected target sequences and a 10-mer and 20-mer failure sequence. Direct infusion/ESI-MS with TEA-acetonitrile or TEA-HFIP-methanol as solvent revealed signals for the 39-mer in the m/z range 700-1600. The presence of derivatives containing one, two, three and four isobutyryl groups indicated that the hydrolysis of the protecting groups after solid-phase synthesis was not complete. Failure sequences could not be identified by direct infusion/ESI-MS under conditions favoring multiple charging of the analytes owing to the high chemical background and coincidental overlapping of m/z signals. However, efficient charge state reduction upon addition of carbonic acid to the electrosprayed solvent shifted the signals of the 39-mer and derivatives to m/z values >2400 and allowed the detection of seven different failure sequences, ranging from the 8-mer to the 23-mer, in the mixture.
    [Abstract] [Full Text] [Related] [New Search]