These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023.
    Author: L'Hocine L, Wang Z, Jiang B, Xu S.
    Journal: J Biotechnol; 2000 Jul 28; 81(1):73-84. PubMed ID: 10936662.
    Abstract:
    Fructosyltransferase (EC.2.4.1.9) and invertase (EC.3.2.1.26) have been purified from the crude extract of Aspergillus niger AS0023 by successive chromatographies on DEAE-sephadex A-25, sepharose 6B, sephacryl S-200, and concanavalin A-Sepharose 4B columns. On acrylamide electrophoresis the two enzymes, in native and denatured forms, gave diffused glycoprotein bands with different electrophoretic mobility. On native-PAGE and SDS-PAGE, both enzymes migrated as polydisperse aggregates yielding broad and diffused bands. This result is typical of heterogeneous glycoproteins and the two enzymes have proved their glycoprotein nature by their adsorption on concanavalin A lectin. Fructosyltransferase (FTS) on native PAGE migrated as two enzymatically active bands with different electrophoretic mobility, one around 600 kDa and the other from 193 to 425 kDa. On SDS-PAGE, these two fractions yielded one band corresponding to a molecular weight range from 81 to 168 kDa. FTS seems to undergo association-dissociation of its glycoprotein subunits to form oligomers with different degrees of polymerization. Invertase (INV) showed higher mobility corresponding to a molecular range from 82 to 251 kDa, on native PAGE, and from 71 to 111 kDa on SDS-PAGE. The two enzymes exhibited distinctly different pH and temperature profiles. The optimum pH and temperature for FTS were found to be 5.8 and 50 degrees C, respectively, while INV showed optimum activity at pH 4.4 and 55 degrees C. Metal ions and other inhibitors had different effects on the two enzyme activities. FTS was completely abolished with 1 mM Hg(2+) and Ag(2+), while INV maintained 72 and 66% of its original activity, respectively. Furthermore, the two enzymes exhibited distinctly different kinetic constants confirming their different nature. The K(m) and V(m) values for each enzyme were calculated to be 44.38 mM and 1030 micromol ml(-1)min(-1) for FTS and 35.67 mM and 398 micromol ml(-1) min(-1) for INV, respectively. FTS and INV catalytic activity was dependent on sucrose concentration. FTS activity increased with increasing sucrose concentrations, while INV activity decreased markedly with increasing sucrose concentration. Furthermore, INV exhibited only hydrolytic activity producing exclusively fructose and glucose from sucrose, while FTS catalyzed exclusively fructosyltransfer reaction producing glucose, 1-kestose, nystose and fructofuranosyl nystose. In addition, at 50% sucrose concentration FTS produced fructooligosaccharides at the yield of 62% against 54% with the crude extract.
    [Abstract] [Full Text] [Related] [New Search]