These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. Author: Famiani F, Walker RP, Técsi L, Chen ZH, Proietti P, Leegood RC. Journal: J Exp Bot; 2000 Apr; 51(345):675-83. PubMed ID: 10938859. Abstract: The compartmentation of key processes in sugar, organic acid and amino acid metabolism was studied during the development of the flesh and seeds of grape (Vitis vinifera L.) berries. Antibodies specific for enzymes involved in sugar (cell wall and vacuolar invertases, pyrophosphate: fructose 6-phosphate phosphotransferase, aldolase, NADP-glyceraldehyde-P dehydrogenase, cytosolic fructose 1,6-bisphosphatase), photosynthesis (Rubisco, fructose 1,6-bisphosphatase, sedoheptulose 1,7-bisphosphatase), amino acid metabolism (cytosolic and mitochondrial aspartate aminotransferases, alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase), organic acid metabolism (phosphoenolpyruvate carboxylase, NAD- and NADP-dependent malic enzyme, ascorbate peroxidase), and lipid metabolism (acetyl CoA carboxylase, isocitrate lyase) were used to determine how their abundance changed during development. There were marked changes in the abundance of many of these enzymes in both the flesh and seeds. The intercellular location of some enzymes was investigated using immunohistochemistry. Several enzymes (e.g. phosphoenolpyruvate carboxylase and those involved in amino acid metabolism) were associated with tissues likely to function in the transport of imported assimilates, such as the vasculature. Although other enzymes (e.g. NADP-malic enzyme and soluble acid invertase, involved in the metabolism of sugars and organic acids) were largely present in the parenchyma cells of the flesh, their distribution was extremely heterogeneous. This study shows that when considering the metabolism of complex structures such as fruit, it is essential to consider how metabolism is compartmentalized between and within different tissues, even when they are apparently structurally homogeneous.[Abstract] [Full Text] [Related] [New Search]