These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway. Author: Yusta B, Boushey RP, Drucker DJ. Journal: J Biol Chem; 2000 Nov 10; 275(45):35345-52. PubMed ID: 10940305. Abstract: Glucagon and the glucagon-like peptides regulate metabolic functions via signaling through a glucagon receptor subfamily of G protein-coupled receptors. Activation of glucagon-like peptide-2 receptor (GLP-2R) signaling maintains the integrity of the intestinal epithelial mucosa via regulation of crypt cell proliferation. Because GLP-2 decreases mortality and reduces intestinal apoptosis in rodents after experimental injury, we examined whether GLP-2R signaling directly modifies the cellular response to external injury. We show here that activation of GLP-2R signaling inhibits cycloheximide-induced apoptosis in baby hamster kidney fibroblasts expressing a transfected GLP-2 receptor. GLP-2 reduced DNA fragmentation and improved cell survival, in association with reduced activation of caspase-3 and decreased poly(ADP-ribose) polymerase cleavage and reduced caspase-8 and caspase-9-like activities. Both GLP-2 and forskolin reduced mitochondrial cytochrome c release and decreased the cycloheximide-induced cleavage of caspase-3 in the presence or absence of the PKA inhibitor H-89. Similarly, GLP-2 increased cell survival following cycloheximide in the presence of the kinase inhibitors PD98054 and LY294002. These findings provide evidence that signaling through G protein-coupled receptors of the glucagon superfamily is directly linked to regulation of apoptosis and suggest the existence of a cAMP-dependent protein kinase-, phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-independent pathway coupling GLP-2R signaling to caspase inhibition and cell survival.[Abstract] [Full Text] [Related] [New Search]