These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isometric muscle length-tension curves do not predict angle-torque curves of human wrist in continuous active movements.
    Author: Gillard DM, Yakovenko S, Cameron T, Prochazka A.
    Journal: J Biomech; 2000 Nov; 33(11):1341-8. PubMed ID: 10940392.
    Abstract:
    In this study we tested the hypothesis that during steady contractions of human wrist extensors or flexors, the torque-angle relationship during movements imposed about the wrist is predicted by the classical isometric muscle length-tension curve, with ascending, descending and ascending limbs. Angle-torque relationships were measured during steady muscle activation (10% of maximal voluntary contraction: MVC), elicited either by electrical stimulation or voluntary regulation of the electromyogram (EMG). Flexion-extension movements of constant speed (+/-10 degrees /s) were imposed on the subjects' hands with a servo actuator, either through the full physiological range of motion +/-50 degrees, or through +/-10 degrees. During extensor contractions, angle-torque curves in +/-50 degrees movements had ascending, descending and ascending limbs, as in isometric contractions. However, in +/-10 degrees movements, torque always increased with increasing muscle length and decreased with decreasing length, even over angles corresponding to the descending limb of isometric curves. For flexor activation, angle-torque curves had similar properties, though descending limbs were less obvious or absent. During imposed movements, hysteresis was observed in the angle-torque curves. This was attributed to non-linearities of the active muscles. Hysteresis reached a maximum at intermediate wrist angles and declined at maximal muscle length, contradicting the recent hypothesis that sarcomere non-uniformity is responsible for the hysteresis. We conclude that the classical isometric length-tension curve, with its prominent descending limb, does not predict angle-torque curves of human wrist muscles in continuous movements. A more appropriate model is one in which stiffness about the wrist is always positive and hysteresis is a significant factor.
    [Abstract] [Full Text] [Related] [New Search]