These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways.
    Author: Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM, Laterra J.
    Journal: Cancer Res; 2000 Aug 01; 60(15):4277-83. PubMed ID: 10945642.
    Abstract:
    We have shown recently that the multifunctional growth factor, scatter factor/hepatocyte growth factor (SF/HGF), and its receptor c-met enhance the malignancy of human glioblastoma through an autocrine stimulatory loop (R. Abounader et al., J. Natl. Cancer Inst., 91: 1548-1556, 1999). This report examines the effects of SF/HGF:c-met signaling on human glioma cell responses to DNA-damaging agents. Pretreating U373 human glioblastoma cells with recombinant SF/HGF partially abrogated their cytotoxic responses to gamma irradiation, cisplatin, camptothecin, Adriamycin, and Taxol in vitro. This cytoprotective effect of SF/HGF occurred at least in part through an inhibition of apoptosis, as evidenced by diminished terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling index and reduced DNA laddering. Anti-c-met U1/ribozyme gene transfer inhibited the ability of SF/HGF to protect against single-strand DNA breakage, DNA fragmentation, and glioblastoma cell death caused by DNA-damaging agents, demonstrating a requirement for c-met receptor function. Phosphorylation of the cell survival-promoting kinase Akt (protein kinase B) resulted from SF/HGF treatment of U373 cells, and both Akt phosphorylation and cell survival induced by SF/HGF were inhibited by phosphatidylinositol 3-kinase inhibitors but not by inhibitors of mitogen-activated protein kinase kinase or protein kinase C. Cytoprotection by SF/HGF in vitro was also inhibited by transient expression of dominant-negative Akt. Transgenic SF/HGF expression by intracranial 9L gliosarcomas reduced tumor cell sensitivity to gamma irradiation, confirming the cytoprotective effect of SF/HGF in vivo. These findings demonstrate that c-met receptor activation by SF/HGF protects certain glioblastoma cells from DNA-damaging agents by activating phosphoinositol 3-kinase-dependent and Akt-dependent antiapoptotic pathways.
    [Abstract] [Full Text] [Related] [New Search]