These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of 4-chloro-m-cresol and caffeine on skinned fibers from rat fast and slow skeletal muscles.
    Author: Choisy S, Huchet-Cadiou C, Léoty C.
    Journal: J Pharmacol Exp Ther; 2000 Sep; 294(3):884-93. PubMed ID: 10945837.
    Abstract:
    Contractile responses to 4-chloro-m-cresol (4-CmC) were tested in saponin- and Triton X-100-skinned fibers from soleus and edl (extensor digitorum longus) muscles of adult rats and compared with those to caffeine. The testing of different concentrations of 4-CmC on saponin-skinned fibers showed that 4-CmC induced a dose-dependent caffeine-like transient contractile response in edl and soleus due to an activation of the ryanodine receptor. Both types of skeletal muscles showed a 10 to 20 times lower 4-CmC threshold concentration and EC(50) value (concentration providing 50% of the maximal 4-CmC contracture) than for caffeine. The results indicate that edl is more sensitive than soleus to 4-CmC and that this difference in sensitivity is more marked than with caffeine. Furthermore, an increase in cytosolic Ca(2+) activity induced a more marked shift of dose-response curves toward lower concentrations for 4-CmC than caffeine. Experiments conducted on Triton X-100-skinned fibers showed that in both muscles, 4-CmC decreased in a dose-dependent manner the Ca(2+)-activated force of contractile apparatus, particularly in edl. Furthermore, the tension pCa curves indicated that 4-CmC induced a dose-dependent sensitizing (soleus) or desensitizing (edl) effect on the Ca(2+) sensitivity of myofibrils. These results indicate that edl and soleus contractile responses can be discriminated with 4-CmC instead of caffeine and that care must be taken in interpreting results because muscular pathology could be due in part to an increase in intracellular Ca(2+).
    [Abstract] [Full Text] [Related] [New Search]