These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic analysis of litter size in Targhee, Suffolk, and Polypay sheep.
    Author: Rao S, Notter DR.
    Journal: J Anim Sci; 2000 Aug; 78(8):2113-20. PubMed ID: 10947097.
    Abstract:
    Data on litter size, weaning weights at 60, 90, and 120 d, postweaning gains from weaning to 120 or 365 d of age, fleece weight, and fiber diameter from Targhee, Suffolk, and Polypay flocks participating in the U.S. National Sheep Improvement Program were used to estimate genetic parameters for litter size and genetic relationships between early-life traits and future litter size. Records on 7,591 lambings by 3,131 Targhee ewes, 10,295 lambings by 5,038 Suffolk ewes, and 6,061 lambings by 2,709 Polypay ewes were used. Heritability estimates for litter size ranged from .09 to .11 across breeds; repeatability ranged from .09 to .13. Additive genetic effects on litter size were generally positively, and occasionally significantly, correlated with animal additive genetic effects on weaning weights and postweaning gains. Genetic correlations (r(a)) ranged from .08 to .48 in Targhee and from .17 to .43 in Suffolk but were close to 0 in Polypay (-.14 to .09). Additive maternal effects on weaning weight were positively associated with litter size in Suffolk and Polypay; this correlation was negative (-.23 to -.35), but not significant, in Targhee. Fleece weight was not strongly associated with litter size; (r(a) = -.09 to .21). However, fiber diameter had a significant undesirable correlation with litter size (.30) in Targhee. Estimates of phenotypic correlations of litter size with early-life traits were uniformly small (-.02 to .08). Thus, although occasional genetic antagonisms between litter size and early-life traits were observed in these data, none appeared large enough to prevent simultaneous genetic improvement in both traits.
    [Abstract] [Full Text] [Related] [New Search]