These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Author: Rath VL, Ammirati M, LeMotte PK, Fennell KF, Mansour MN, Danley DE, Hynes TR, Schulte GK, Wasilko DJ, Pandit J. Journal: Mol Cell; 2000 Jul; 6(1):139-48. PubMed ID: 10949035. Abstract: Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate, which enters glycolysis to fulfill the energetic requirements of the organism. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target. To support inhibitor design, we determined the crystal structures of the active and inactive forms of human liver glycogen phosphorylase a. During activation, forty residues of the catalytic site undergo order/disorder transitions, changes in secondary structure, or packing to reorganize the catalytic site for substrate binding and catalysis. Knowing the inactive and active conformations of the liver enzyme and how each differs from its counterpart in muscle phosphorylase provides the basis for designing inhibitors that bind preferentially to the inactive conformation of the liver isozyme.[Abstract] [Full Text] [Related] [New Search]