These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of individual fatty acids on glucose uptake and glycogen synthesis in soleus muscle in vitro. Author: Thompson AL, Lim-Fraser MY, Kraegen EW, Cooney GJ. Journal: Am J Physiol Endocrinol Metab; 2000 Sep; 279(3):E577-84. PubMed ID: 10950825. Abstract: Soleus muscle strips from Wistar rats were preincubated with palmitate in vitro before the determination of insulin-mediated glucose metabolism in fatty acid-free medium. Palmitate decreased insulin-stimulated glycogen synthesis to 51% of control in a time- (0-6 h) and concentration-dependent (0-2 mM) manner. Basal and insulin-stimulated glucose transport/phosphorylation also decreased with time, but the decrease occurred after the effect on glycogen synthesis. Preincubation with 1 mM palmitate, oleate, linoleate, or linolenate for 4 h impaired glycogen synthesis stimulated with a submaximal physiological insulin concentration (300 microU/ml) to 50-60% of the control response, and this reduction was associated with impaired insulin-stimulated phosphorylation of protein kinase B (PKB). Preincubation with different fatty acids (all 1 mM for 4 h) had varying effects on insulin-stimulated glucose transport/phosphorylation, which was decreased by oleate and linoleate, whereas palmitate and linolenate had little effect. Across groups, the rates of glucose transport/phosphorylation correlated with the intramuscular long-chain acyl-CoA content. The similar effects of individual fatty acids on glycogen synthesis but different effects on insulin-stimulated glucose transport/phosphorylation provide evidence that lipids may interact with these two pathways via different mechanisms.[Abstract] [Full Text] [Related] [New Search]