These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle.
    Author: Navegantes LC, Resano NM, Migliorini RH, Kettelhut IC.
    Journal: Am J Physiol Endocrinol Metab; 2000 Sep; 279(3):E663-8. PubMed ID: 10950836.
    Abstract:
    The role of adrenoceptor subtypes and of cAMP on rat skeletal muscle proteolysis was investigated using a preparation that maintains tissue glycogen stores and metabolic activity for several hours. In both soleus and extensor digitorum longus (EDL) muscles, proteolysis decreased by 15-20% in the presence of equimolar concentrations of epinephrine, isoproterenol, a nonselective beta-agonist, or clenbuterol, a selective beta(2)-agonist. Norepinephrine also reduced proteolysis but less markedly than epinephrine. No change in proteolysis was observed when muscles were incubated with phenylephrine, a nonselective alpha-agonist. The decrease in the rate of protein degradation induced by 10(-4) M epinephrine was prevented by 10(-5) M propranolol, a nonselective beta-antagonist, and by 10(-5) M ICI 118.551, a selective beta(2)-antagonist. The antiproteolytic effect of epinephrine was not inhibited by prazosin or yohimbine (selective alpha(1)-and alpha(2)-antagonists, respectively) or by atenolol, a selective beta(1)-antagonist. Dibutyryl cAMP and isobutylmethylxanthine reduced proteolysis in both soleus and EDL muscles. The data suggest that catecholamines exert an inhibitory control of skeletal muscle proteolysis, probably mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.
    [Abstract] [Full Text] [Related] [New Search]