These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro resistance profile of the human immunodeficiency virus type 1 protease inhibitor BMS-232632. Author: Gong YF, Robinson BS, Rose RE, Deminie C, Spicer TP, Stock D, Colonno RJ, Lin PF. Journal: Antimicrob Agents Chemother; 2000 Sep; 44(9):2319-26. PubMed ID: 10952574. Abstract: BMS-232632 is an azapeptide human immunodeficiency virus (HIV) type 1 (HIV-1) protease inhibitor that displays potent anti-HIV-1 activity (50% effective concentration [EC(50)], 2.6 to 5.3 nM; EC(90), 9 to 15 nM). In vitro passage of HIV-1 RF in the presence of inhibitors showed that BMS-232632 selected for resistant variants more slowly than nelfinavir or ritonavir did. Genotypic and phenotypic analysis of three different HIV strains resistant to BMS-232632 indicated that an N88S substitution in the viral protease appeared first during the selection process in two of the three strains. An I84V change appeared to be an important substitution in the third strain used. Mutations were also observed at the protease cleavage sites following drug selection. The evolution to resistance seemed distinct for each of the three strains used, suggesting multiple pathways to resistance and the importance of the viral genetic background. A cross-resistance study involving five other protease inhibitors indicated that BMS-232632-resistant virus remained sensitive to saquinavir, while it showed various levels (0. 1- to 71-fold decrease in sensitivity)-of cross-resistance to nelfinavir, indinavir, ritonavir, and amprenavir. In reciprocal experiments, the BMS-232632 susceptibility of HIV-1 variants selected in the presence of each of the other HIV-1 protease inhibitors showed that the nelfinavir-, saquinavir-, and amprenavir-resistant strains of HIV-1 remained sensitive to BMS-232632, while indinavir- and ritonavir-resistant viruses displayed six- to ninefold changes in BMS-232632 sensitivity. Taken together, our data suggest that BMS-232632 may be a valuable protease inhibitor for use in combination therapy.[Abstract] [Full Text] [Related] [New Search]