These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Resolution of sick building syndrome in a high-security facility. Author: Hiipakka DW, Buffington JR. Journal: Appl Occup Environ Hyg; 2000 Aug; 15(8):635-43. PubMed ID: 10957819. Abstract: The main objective of this article is to serve as a case study for other industrial hygiene (IH) professionals' review as a "real world" effort in responding to a facility perceived as "sick" by its occupants. As many industrial hygienists do not have extensive backgrounds in evaluating microbial air contaminants or the mechanical function of building HVAC units, the overall intent is to provide "lessons learned" to IH generalists who may be asked to participate in indoor environmental quality (IEQ) surveys. In September 1994, a suspected case of "sick building syndrome" was investigated (with significant airborne fungal loads confirmed) at a communications center after numerous occupants reported upper respiratory disease and/or allergy-type symptoms. The setting was a two-story structure approximately 30 years old, with a normal occupancy load of 350 to 400 persons. In addition to continual structural modifications, the central HVAC air conditioning systems had poor maintenance histories. Inspection of HVAC components revealed visible fungal growth on air filters and air ducts and in cooling fan condensate drip pans. Fungal air samples were collected with an Anderson N6 air sampler and Sabouraund dextrose agar media. Over a study period of 23 months, three rounds of 26 air samples were collected for 5 minutes each at 28.3 liters/minute airflow. Cultures exhibited fungi such as Aspergillus, Penicillium, Alternaria, and Cladosporium. Certain strains of these fungi produce mycotoxins that may cause a variety of deleterious health effects such as those described by occupants. Initial 1994 airborne fungal concentrations ranged from 85 to 6157 colony forming units (CFUs) per cubic meter of sampled air (CFU/m3). Some investigators have reported fungal concentrations as low as 245 CFU/m3 associated with complaint sites in other buildings. Remediation efforts involved hiring a dedicated mechanic to implement a HVAC preventive maintenance program (including regular replacement of all HVAC air filters and cleaning of accessible components with water/bleach solution). Post-abatement January 1996 re-sampling revealed a significant drop in airborne fungal colonies up to 97 percent (range = 21 to 1092 CFUs/m3)--which also coincided with physicians at the local hospital sensing a qualitative reduction in patient visits from facility workers. To address seasonal bias, a final August 1996 air sample round revealed a range of 14 to 500 CFUs/m3. Of the 21 workspaces sampled in all three rounds, nine continued to show a decline in CFUs/m3 from September 1994 baseline counts. These results demonstrate the critical role of an ongoing HVAC maintenance program for reducing potential reservoirs of fungal organisms in indoor work environments. Building renovations (especially those involving major changes to building layout and usage) can adversely affect IEQ if plans do not include coordinated updates and regular preventive maintenance of HVAC systems. Eventual negative outcomes can be reduced occupant productivity and deleterious health effects.[Abstract] [Full Text] [Related] [New Search]