These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mammalian GFRalpha -4, a divergent member of the GFRalpha family of coreceptors for glial cell line-derived neurotrophic factor family ligands, is a receptor for the neurotrophic factor persephin.
    Author: Masure S, Cik M, Hoefnagel E, Nosrat CA, Van der Linden I, Scott R, Van Gompel P, Lesage AS, Verhasselt P, Ibáñez CF, Gordon RD.
    Journal: J Biol Chem; 2000 Dec 15; 275(50):39427-34. PubMed ID: 10958791.
    Abstract:
    Four members of the glial cell line-derived neurotrophic factor family have been identified (GDNF, neurturin, persephin, and enovin/artemin). They bind to a specific membrane-anchored GDNF family receptor as follows: GFRalpha-1 for GDNF, GFRalpha-2 for neurturin, GFRalpha-3 for enovin/artemin, and (chicken) GFRalpha-4 for persephin. Subsequent signaling occurs through activation of a common transmembrane tyrosine kinase, cRET. GFRalpha-4, the coreceptor for persephin, was previously identified in chicken only. We describe the cloning and characterization of a mammalian persephin receptor GFRalpha-4. The novel GFRalpha receptor is substantially different in sequence from all known GFRalphas, including chicken GFRalpha-4, and lacks the first cysteine-rich domain present in all previously characterized GFRalphas. At least two different GFRalpha-4 splice variants exist in rat tissues, differing at their respective COOH termini. GFRalpha-4 mRNA is expressed at low levels in different brain areas in the adult as well as in some peripheral tissues including testis and heart. Recombinant rat GFRalpha-4 variants were expressed in mammalian cells and shown to be at least partially secreted from the cells. Persephin binds specifically and with high affinity (K(D) = 6 nm) to the rat GFRalpha-4 receptor, but no cRET activation could be demonstrated. Although the newly characterized mammalian GFRalpha-4 receptor is structurally divergent from previously characterized GFRalpha family members, we suggest that it is a mammalian orthologue of the chicken persephin receptor. This discovery will allow a more detailed investigation of the biological targets of persephin action and its potential involvement in diseases of the nervous system.
    [Abstract] [Full Text] [Related] [New Search]