These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma.
    Author: Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM.
    Journal: Hear Res; 2000 Sep; 147(1-2):251-60. PubMed ID: 10962189.
    Abstract:
    Pharmacological studies of the inferior colliculus (IC) suggest that the inhibitory amino acid neurotransmitter gamma-aminobutyric acid (GABA) plays an important role in shaping responses to simple and complex acoustic stimuli. Several models of auditory dysfunction, including age-related hearing loss, tinnitus, and peripheral deafferentation, suggest an alteration of normal GABA neurotransmission in central auditory pathways. The present study attempts to further characterize noise-induced changes in GABA markers in the IC. Four groups (unexposed control, 0 h post-exposure, 42 h post-exposure, and 30 days post-exposure) of 3-month-old male Fischer 344 rats were exposed to a high intensity sound (12 kHz, 106 dB) for 10 h. Observed hair cell damage was primarily confined to the basal half of the cochlea. There was a significant decrease in glutamic acid decarboxylase (GAD(65)) immunoreactivity in the IC membrane fraction compared to controls (P<0.05) at 0 h (-41%) and 42 h (-28%) post-exposure, with complete recovery by 30 days post-exposure (P>0.98). Observed decreases in cytosolic levels of GAD(65) were not significant. Quantitative muscimol receptor binding revealed a significant increase (+20%) in IC 30 days after sound exposure (P<0.05). These data suggest that changes in GABA neurotransmission occur in the IC of animals exposed to intense sound. Additional studies are needed to determine whether these changes are a result of protective/compensatory mechanisms or merely peripheral differentiation, as well as whether these changes preserve or diminish central auditory system function.
    [Abstract] [Full Text] [Related] [New Search]