These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cursoriality in bipedal archosaurs. Author: Jones TD, Farlow JO, Ruben JA, Henderson DM, Hillenius WJ. Journal: Nature; 2000 Aug 17; 406(6797):716-8. PubMed ID: 10963594. Abstract: Modern birds have markedly foreshortened tails and their body mass is centred anteriorly, near the wings. To provide stability during powered flight, the avian centre of mass is far from the pelvis, which poses potential balance problems for cursorial birds. To compensate, avians adapted to running maintain the femur subhorizontally, with its distal end situated anteriorly, close to the animal's centre of mass; stride generation stems largely from parasagittal rotation of the lower leg about the knee joint. In contrast, bipedal dinosaurs had a centre of mass near the hip joint and rotated the entire hindlimb during stride generation. Here we show that these contrasting styles of cursoriality are tightly linked to longer relative total hindlimb length in cursorial birds than in bipedal dinosaurs. Surprisingly, Caudipteryx, described as a theropod dinosaur, possessed an anterior centre of mass and hindlimb proportions resembling those of cursorial birds. Accordingly, Caudipteryx probably used a running mechanism more similar to that of modern cursorial birds than to that of all other bipedal dinosaurs. These observations provide valuable clues about cursoriality in Caudipteryx, but may also have implications for interpreting the locomotory status of its ancestors.[Abstract] [Full Text] [Related] [New Search]