These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations. Author: Stephanova DI, Mileva K. Journal: Biol Cybern; 2000 Aug; 83(2):161-7. PubMed ID: 10966055. Abstract: Action potentials and electrotonic responses to 300-ms depolarizing and hyperpolarizing currents for human motor and sensory myelinated nerve fibres have been simulated on the basis of double cable models. The effects of blocked nodal or internodal potassium (fast or slow) channels on the fibre action potentials, early and late adaptations to 30-ms suprathreshold slowly increasing depolarizing stimuli have been examined. The effects of the same channels on accommodation after the termination of a prolonged (100 ms) hyperpolarizing current pulse have also been investigated. By removing the nodal fast potassium conductance the action potentials of the sensory fibres are considerably broader than those of the motor neurons. For both types of fibres, the blocked nodal slow potassium channels have a substantially smaller effect on the action potential repolarization. When the suprathreshold depolarizing current intensity is increased, the onset of the spike burst occurs sooner, which is common in the behaviour of the fibres. The most striking differences in the burst activity during early adaptation have been found between the fibres when the nodal fist potassium channels are blocked. The results obtained confirm the fact that the motor fibres adapt more quickly to sustained depolarizing current pulses than the sensory ones. The results also show that normal human motor and sensory fibres cannot be excited by a 100-ms hyperpolarizing current pulse, even at the threshold level. When removing the potassium channels in the nodal or internodal axolemma, the posthyperpolarization increase in excitability is small, which is common in the behaviour of the fibres. However, anode break excitation can be simulated in the fibres with simultaneous removal of the potassium channels under the myelin sheath, and this is more pronounced in the human sensory fibres than in motor fibres. This phenomenon can also be found when the internodal and some of the nodal (fast or slow) potassium channels are simultaneously blocked.[Abstract] [Full Text] [Related] [New Search]