These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: T lymphocyte-triggering factor of african trypanosomes is associated with the flagellar fraction of the cytoskeleton and represents a new family of proteins that are present in several divergent eukaryotes.
    Author: Hill KL, Hutchings NR, Grandgenett PM, Donelson JE.
    Journal: J Biol Chem; 2000 Dec 15; 275(50):39369-78. PubMed ID: 10969087.
    Abstract:
    The trypanosome cytoskeleton consists almost entirely of microtubule-based structures. Although alpha- and beta-tubulin from Trypanosoma brucei have been well characterized, much less is known about other cytoskeleton-associated proteins in trypanosomes. Using biochemical fractionation, we demonstrate here that T lymphocyte-triggering factor (TLTF) from T. brucei is a component of the detergent-resistant and Ca(2+)-resistant fraction of the parasite cytoskeleton. This fraction contains the flagellar apparatus and a subset of cytoskeletal protein complexes that together function in cell motility, cytokinesis, and organelle inheritance. We also show that TLTF-related genes are present in several highly divergent eukaryotic organisms. Although the function of the corresponding proteins is not known, the mammalian TLTF-like gene (GAS11; growth arrest-specific gene 11) is up-regulated in growth-arrested cells and is a candidate tumor suppressor (Whitmore, S. A., Settasatian, C., Crawford, J., Lower, K. M., McCallum, B., Seshadri, R., Cornelisse, C. J., Moerland, E. W., Cleton-Jansen, A. M., Tipping, A. J., Mathew, C. G., Savnio, M., Savoia, A., Verlander, P., Auerbach, A. D., Van Berkel, C., Pronk, J. C., Doggett, N. A., and Callen, D. F. (1998) Genomics 52, 325-331), suggestive of a role in coordinating cytoskeleton activities. Consistent with this possibility, we show that the human GAS11 protein contains a 144-amino acid domain that co-localizes with microtubules when fused to the green fluorescent protein and expressed in mammalian cells. These findings suggest that TLTF represents a newly defined protein family, whose members contribute to cytoskeleton function in species as diverse as protozoa and mammals.
    [Abstract] [Full Text] [Related] [New Search]