These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel S-nitrosothiols do not engender vascular tolerance and remain effective in glyceryl trinitrate-tolerant rat femoral arteries.
    Author: Miller MR, Megson IL, Roseberry MJ, Mazzei FA, Butler AR, Webb DJ.
    Journal: Eur J Pharmacol; 2000 Sep 01; 403(1-2):111-9. PubMed ID: 10969151.
    Abstract:
    Organic nitrates, such as glyceryl trinitrate, are nitric oxide (NO) donor drugs that engender tolerance with long-term use. Here, we tested the hypothesis that our novel S-nitrosothiols, N-(S-nitroso-N-acetylpenicillamine)-2-amino-2-deoxy-1,3,4,6, tetra-O-acetyl-beta-D-glucopyranose (RIG200) and S-nitroso-N-valeryl-D-penicillamine (D-SNVP), do not induce vascular tolerance ex vivo. Femoral arteries from adult male Wistar rats were preconstricted with phenylephrine and perfused with the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME). Perfusion pressure was measured during 20-h treatment with supramaximal concentrations of NO donor (10 microM). Perfusion with glyceryltrinitrate caused a vasodilatation, which recovered over 2-20 h. In contrast, the S-nitrosothiols caused vasodilatations that were maintained throughout the 20-h perfusion period. Responses to S-nitrosothiols were partially reversed by the NO scavenger ferrohaemoglobin and fully reversed by the soluble guanylate cyclase inhibitor [1H-[1,2,4] oxadiazole [4,3-a]quinoxaline-1-one (ODQ). Glyceryltrinitrate-tolerant vessels were fully responsive to bolus injections of S-nitrosothiols. Resistance to tolerance is an attractive property of our novel compounds, particularly in view of their sustained activity in arteries with damaged endothelium.
    [Abstract] [Full Text] [Related] [New Search]